If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2-123k=0
a = 8; b = -123; c = 0;
Δ = b2-4ac
Δ = -1232-4·8·0
Δ = 15129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15129}=123$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-123)-123}{2*8}=\frac{0}{16} =0 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-123)+123}{2*8}=\frac{246}{16} =15+3/8 $
| 18y-15=-21+12y | | 5+4(4x-1)=5(x+2) | | 5+4(4x-1)=5(x+@ | | 2(k+-5)+3k=k+6 | | -15a-40=23-8a | | x/9=-20 | | x=x+30/100+700 | | 3x+8+2x=11 | | y=6(2)+4 | | 56=-u/4 | | 5u-26=18u | | 3(x+1)=11(x-7) | | 27=8y+13 | | 10n−3n=7 | | 11x-3+21x=-6 | | 3/4(z-1)=z-3 | | (h−8)2=0(h−8)2=0 | | 50(1-x^2)-25x-50=0 | | (3x)/(2)+7=4 | | X=x/2+8x=10 | | 360(1/(x)-1/(x+5))=4/5 | | 5(8-x)=8-x | | -37z+50=-37z+49 | | 50(1-x^2)-75x=0 | | u•7=0.3 | | x/3+11=1/12 | | 6=0.445d+14.7 | | 8x-2=76 | | n2+12n-13=0 | | -6-6n=-4n | | 2x+5+3x=6+3x+7 | | 7+8c=243 |